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The bifurcation structure of two-dimensional, pressure-driven flows through a 
horizontal, rectangular duct that  is heated with a uniform flux in the axial direction 
and a uniform temperature around the periphery is examined. The solution structure 
of the flow in a square duct is determined for Grashof numbers (Gr) in the range of 
0 to los using an arclength continuation scheme. The structure is much more 
complicated than reported earlier by Nandakumar, Masliyah & Law (1985). The 
primary branch with two limit points and a hysteresis behaviour between the two- 
and four-cell flow structure that was computed by Nandakumar et al. is confirmed. 
An additional symmetric solution branch, which is disconnected from the primary 
branch (or rather connected via an asymmetric solution branch), is found. This has 
a two-cell flow structure at one end, a four-cell flow structure a t  the other, and three 
limit points are located on the path. Two asymmetric solution branches emanating 
from symmetry-breaking bifurcation points are also found for a square duct. Thus 
a much richer solution structure is found with up to five solutions over certain ranges 
of Gr. A determination of linear stability indicates that all two-dimensional solutions 
develop some form of unstable mode by the time Gr is increased to about 220000. In  
particular, the four-cell becomes unstable to  asymmetric perturbations. The paths of 
the singular points are tracked with respect to variation in the aspect ratio using the 
fold-following algorithm. Transcritical points are found at aspect ratios of 1.408 and 
1.456 respectively for Prandtl numbers Pr = 0.73 and 5.  Above these aspect ratios 
the four-cell solution is no longer on the primary branch. Some of the fold curves are 
connected in such a way as to form a tilted cusp. When the channel cross-section is 
tilted even slightly (lo) with respect to the gravity vector, the bifurcation points 
unfold and the two-cell solution evolves smoothly as the Grashof number is 
increased. The four-cell solutions then become genuinely disconnected from the 
primary branch. The uniqueness range in Grashof number increases with increasing 
tilt, decreasing aspect ratio and decreasing Prandtl number. 

1. Introduction 
Mixed-convection heat transfer in horizontal ducts has been studied quite 

extensively since the early work of Morton (1959). Interest in the mixed-convection 
problem stems in part from the importance of such mechanisms in heat exchangers. 
A forced flow is maintained through the duct by an imposed pressure gradient, 
dp’/dz’. Although several alternative means of heating are possible, we consider the 
case examined by Morton (1959) viz. an axially uniform heat flux condition realizable 
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by electrical heating. Furthermore we consider the case of fully developed (a term 
used synonymously with two-dimensional, and axially invariant) flow conditions such 
that the bulk temperature of the fluid increases linearly in the axial direction, i.e. 
dTb/dz’ = constant. Morton (1959) studied the flow in a circular geometry and 
treated the buoyancy effect as a perturbation over the Poiseuille flow. He developed 
a three-term, regular series expansion following essentially Dean’s (1927) de- 
velopment of a similar series solution for flow in a curved duct. Since that time the 
similarity between the buoyancy-driven secondary flow in the mixed-convection 
problem and the centrifugal force-driven secondary flow in the Dean problem has 
been recognized by a number of investigators. In  recent years an equally important 
motivating factor for studying these two problems has been the hydrodynamic 
stability and bifurcation aspects of the flow. Winters (1987) has presented the most 
comprehensive bifurcation study of the Dean problem in curved ducts of rectangular 
cross-section. Dennis & Ng (1982), Nandakumar & Masliyah (1982) and Yang & 
Keller ( 1 9 8 6 ~ )  have examined similar aspects in curved ducts of circular cross- 
sections. 

The early theoretical work using a perturbation approach by Morton (1959), Iqbal 
& Stachiewicz (1966) and Faris & Viskanta (1969) marked the beginnings of a 
rational analysis of the mixed-convection problem. The numerical study of the 
problem by Cheng & Hwang (1969) and Hwang & Cheng (1970) was limited to a Gr 
of about 50000 and only a two-cell pattern was observed over this range. The most 
recent work is by Van Dyke (1990) who has used the computer-extended Stokes 
series to  elucidate the flow structure a t  large values of the dynamical parameter. The 
questions regarding bifurcation have been left unresolved. The earliest evidence of a 
transition to a four-cell flow structure was contained in the numerical work by 
Patankar, Ramadhyani & Sparrow (1978) who examined the effect of non-uniform 
peripheral heating in a duct of circular cross-section. A similar transition was 
observed by Chou & Hwang (1984) for a rectangular geometry with uniform heating. 
Multiplicity, however, was not demonstrated in any of these works. Nandakumar, 
Masliyah & Law (1985, hereinafter referred to as I )  demonstrated that multiple, two- 
dimensional solutions exist for this problem in ducts of square, circular and 
semicircular cross-sections. More complete references to other experimental and 
numerical work on mixed convection can be found in (I). Here we review the known 
aspects of the flow structure and compare i t  with that of the Dean problem. 

The dynamical parameters in the Dean and mixed-convection problems are, 
respectively, the Dean number (Dn = Re/Rk) and the Grashof number (Gr = 
a3PgQ’/kv2). Here Re is the Reynolds number, R, is the radius of curvature of a 
curved duct, a is half the channel height, p is the coefficient of thermal expansion for 
the fluid, g is the acceleration due to gravity, Q‘ is the heat transfer rate per unit 
length of the duct, k is the thermal conductivity of the fluid and v is the kinematic 
viscosity. In  both problems, a typical two-dimensional flow structure at sufficiently 
small values of the dynamical parameter consists of two counter-rotating vortices in 
a plane perpendicular to the axis of the duct. The interaction of the secondary flow 
with the pressure-driven primary flow causes a shift in the location of the maximum 
axial velocity away from the centre of the duct and in the direction of the secondary 
velocities in the middle of the channel. Upon increasing the value of the dynamical 
parameter sufficiently, the two-cell flow structure becomes unstable and gives way to 
another form of two-dimensional flow with a four-cell structure in the cross-plane. 
Winters (1987) found such four-cell flows in the Dean problem to be unstable to 
asymmetric perturbations. Similar results are found in the present work on the 
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FIQURE 1.  Geometry and coordinate system. 

mixed-convection problem. Upon increasing the dynamical parameter even more, all 
two-dimensional flows become unstable, and there is evidence for the evolution of 
streamwise periodic three-dimensional flows in both the problems (Ravi Sankar, 
Nandakumar & Masliyah 1988 ; Ravi Sankar, Nandakumar & Weinitschke 1991). 
The three-dimensional flow structure of the mixed convection problem will be 
presented in a follow-up study. 

The present work is confined to a study of two-dimensional flows and extends the 
results presented in (I) in several ways. Certain mean-square estimates, which can be 
useful in developing uniqueness proofs, are presented in $3. The numerical methods 
are outlined in $4. The slowly convergent successive relaxation scheme used in (I) is 
replaced by the more effective Euler-Newton continuation scheme. Unlike in (I) the 
reflective symmetry is not imposed and both symmetric and asymmetric solutions 
are sought by solving over appropriate flow domains. The limit points were 
bracketed in (I) using the simple bisection algorithm. In the present work both the 
limit points and symmetry-breaking bifurcation points are determined precisely 
using the extended system formulations of Moore & Spence (1980), Spence & Werner 
(1982) and Werner & Spence (1984). In  addition, using the tilt of the channel cross- 
section, $, with respect to the gravity vector (see figure 1 )  as a new unfolding 
parameter, together with the pseudoarclength continuation method proposed by 
Keller (1977), several additional solution branches are discovered. More specifically, 
for Pr = 0.73 in a square duct, the primary branch with two limit points that was 
computed in (I) is confirmed. I n  addition, a new isolated symmetric branch and two 
new asymmetric solution branches which emanate from symmetry-breaking 
bifurcation points are discovered within a Grashof number range of 0 to los. 

Next the variation of these singular points with aspect ratio, y = b/a  (where 2b is 
the channel width) is tracked for the case of zero tilt with the fold-following 
algorithm for two Prandtl numbers of 0.73 and 5.0. Higher-order singularities are 
present on these fold curves, but their locations are only bracketed approximately. 
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For a square duct, the variation of these singular points with the Prandtl number is 
also tracked over a range of 0.73 to 5.0 which are typical values for air and water, 
respectively. No higher-order singularities are found on these folds. The linear 
stability of the various solution branches for a square duct is determined using a 
combination of power iteration and eigenvalue calculations. As there is no method of 
predicting a priori the total number of solutions for a given parameter set, one 
cannot be certain that all the two-dimensional solution branches of interest have yet 
been discovered. However, a self-consistent picture of the solution structure emerges 
from this study. Several features of the solution structure are found to be quite 
similar to those observed by Winters (1987) for the Dean problem and also to a 
convective heat transfer problem in porous media studied by Weinitschke et al. 
(1990). 

2. Governing equations 
A rectangular duct of width 2b and height 2a is considered. The aspect ratio of the 

duct is y = b/a. The axis of the duct is aligned perpendicular to the gravity vector. 
The cross-section of the duct can be tilted by q5’ with respect to  the gravity vector 
as shown in figure 1. The flow is driven by a constant imposed pressure gradient, 
dp‘/dz‘ and heated by an axially uniform flux, dTb/dz’. Thus an axially invariant 
state is assumed to  exist, namely 0’ = (u’(x, y), v’(x, y), w’(x, y)). Furthermore, the 
Boussinesq approximation is invoked to account for the density variation, p = 
p,[l-B(T’-T:)], only in the buoyancy force term, g. Here the subscript r denotes a 
reference state. The equations of motion subject to these conditions are : 
continuity 

energy equation 

Note that a fully developed state implies, aT/az’  = dTb/dz’. Since the flow is two- 
dimensional, the stream function, @‘, and the axial vorticity, a’ can be introduced 
as 
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Equations (1)-(5) are then cast in the standard stream function-vorticity 
formulation as in (I). The following scales are used to normalize the variables: 

2’ 

b ’  
x=- YI Y =;, 

t‘ 
a2/v ’ 

7 = -  
U’ 

v / a  ’ 
u = -  V‘ 

v/b ’ 
v=- W‘ 

( - dp’/dz’)a2/pv) ’ 
W =  

Yw-T e =  $‘ 52’ $=-’ a=- 
V v/az ’ (dYb/dz’)( - dp‘/dz‘)a4/pv2 ’ 

where Yw is the wall temperature. The dimensionless form of the equations of motion 
are 

w, = v; w + 1 / y  [$’ w] + 1, 

e, = 1/pr V; e + i / y  [+, el + W, 

52, = V;52+l/y[$,SZ]-A(l/y8, cos q5-er sin q5), 

(7) 

(8) 

(9) 

v;q5+52 = 0, (10) 

where 

The scales used here differ slightly from the ones used in (I). The lengthscales are 
chosen such that the aspect ratio y appears explicitly in the equations. The 
computational domains are independent of y and are given by R+ : = {(x, y)I - 1 < 
x < 1 , 0  < y < l }  and R : =  {(z, y)(-1 < x < 1, - 1  < y < l}, respectively, for the 
stationary symmetric and non-symmetric cases. This has certain advantages in 
the path-following schemes with respect to aspect ratio. The axial velocity and 
temperature scales are chosen such that the mean axial velocity does not explicitly 
appear in the equations of motion. Hence, the dynamical parameter appearing 
explicitly in the above equations is h which is related to the Grashof number (defined 
in (I) as Gr = a3/39Q/kv2) by Gr = A4 (w) Pr, where (w) is the mean axial velocity. 
It is computed after a solution is obtained for a specified A. 

2.1. Symmetry and boundary conditions 
The no-slip, impenetrability and uniform temperature conditions on the walls result 
in 

u = ~ ,  v = o ,  w = o ,  $ = o ,  $n=o ,  e = o ,  

where, en denotes the normal derivative a t  the wall. The boundary condition for the 
vorticity on the wall is derived from a Taylor series expansion together with the 
above conditions. Its specific form will be given in $4. For q5 = 0 the equations admit 
solutions with the following symmetry properties : 

(12) 

(13) 

i u(-x,y)  = -N%, y), 4 - G  y) = v(x,y), 

Q(-X,Y) = -Q(%Y), $(-., y) = -$(x,y). 

w(-z,Y) = w(z,Y), e(-x,y) = O(X,Y), 

Hence, the boundary conditions on the line of symmetry (z = 0) are 

w, = 0, ex = 0, $ = 0, a = 0. 
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For $ 9 0 the solution must be obtained over R .  The solutions for $ < 0 can be 
constructed from those for $ > 0 using the following symmetry property: 

u(-x,y;-$) =-u(%y;$), v(--z,y; -$) =v(x ,y ;$) ,  

Q(-x,y;  -$) = -Q(x,y;$), @(-x,y; -4) =-@(x,y;$). 
w(--’y; -$) = w(x,y;$), 0(--z,y; -$) = W,y ;$ )  } (14) 

The friction factor is defined as 

fRe = 8Y2 / [ (1  +YY ( W > L  (15) 

where the average axial velocity is given by 

1 

(w> = r [ wdzdy/(Area). 
J - 1  J-I 

The Nusselt number is defined by 

where the average bulk temperature (0,) can be computed from 

(8,) = 5’ wOdxdy/(Area) (w). 
-1  -1  

3. Positivity of w and 19 and mean-square estimates 
We wish to derive some a priori bounds for stationary solutions of the boundary- 

value problem (7-11). Let R be an arbitrary two-dimensional domain such that 
Green’s first identity holds. The variables x, y are scaled such that y = 1 in (7)-(10). 
The following relations hold for any f ,  g ,  he C’(R) : 

/Rhlf,91dR = - s, f [h ,g lM 

JRV41dR = 0, J / [ g , f l d R  = 0 

provided f = 0 or h = 0 on the boundary aR of R ,  

iff = 0 or g = 0 on aR, and 

where A,  is the smallest eigenvalue of V2u+Au = 0, u = 0 on aR. To prove (17), set 
u = fh(g,, -gz) and apply the divergence theorem ; (18) is proved similarly. 

We first show that w(x,y) and B(x,y) are positive in R .  Multiplying (7 )  by w and 
(8) by 0 and integrating by parts, one finds, using (11) and (17),  
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pr j I vw 12m A ,  A;' j pel2 m pr2 A ,  A;$ j(e + w2) m (1 +pr)  A,/A; 
5.0 0.5075 0.8106 0.2108 0.8321 0.3436 0.9855 
3.0 0.4948 0.8106 0.0862 0.2996 0.2576 0.6570 
1.0 0.4910 0.8106 0.0132 0.0333 0.1592 0.3285 
0.73 0.4976 0.8106 0.0076 0.0177 0.1460 0.2842 

TABLE 1. Comparison of mean-square estimates 

If w < 0, it  must assume a local minimum inside R, say at Po = (xo, yo) .  Hence w, = 
w y  = 0 a t  Po. Thus V2w = - 1 from (7),  which is not possible at a relative minimum. 
The same argument shows that B(z, y )  > 0 in R, since at Po where VB = 0, (8) yields 
V28 = -Prw(x,, yo)  < 0. 

Next, we apply the Schwarz inequality to the right-hand side of (20), followed by 
an application of (19), 

where A ,  is the area of R. It follows that 

The same procedure 

Finally, multiplying 
(17),  one finds 

(22) 

applied to the right-hand side of (21) yields, in view of (22), 

IR I V B ~ ~  d~ < (Pr)2AR A;S. (23) 

(7) by 8 and (8) by w and following the same steps, again using 

(B+w2)dR < (1+Pr)ARAL2. (24) 

Note that these bounds are independent of A. Along these lines similar estimates can 
be derived for S2 and V$. These results are 

The a priori bounds for 52 and V$ depend also on A. 
The above bounds, valid for any solution of the stationary boundary-value 

problem (7)-( 1 l),  turn out to be surprisingly close to the actual numerical solutions. 
Table 1 shows a comparison of numerically computed left-hand sides of (22)-(24) a t  
A = 2.40723 with the rigorously derived bounds for a square with zero tilt. One may 
hope to use these bounds for proving uniqueness of stationary solutions for 
sufficiently small A and in providing estimates of uniqueness ranges in the parameter 
space. We shall, however, not pursue this matter further here. I n  the limit case 
A = 0 the equations (7)-( 11) become linear. Moreover, from the structure of (7)-( 11) 
we expect the number of regular solutions to remain odd with increasing A. 
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4. Numerical methods 
4.1. Numerical algorithms 

We are interested primarily in the stationary solutions to (7)-( 10). Transient 
simulations are presented in Fung, Nandakumar & Masliyah (1987). But they are 
useful only as a means of reaching a steady state. Transient, two-dimensional 
solutions are not physically realizable in an experiment as they are inconsistent with 
the axial invariance or fully developed flow assumption. In other words we expect 
any disturbance a t  an axial position to grow (or decay) with time as well as be carried 
downstream by the forced axial flow. In  regions of the parameter space where there 
are multiple solutions, the pseudo-transient simulation may converge to any one of 
the stationary solutions, depending on the initial starting condition, the stability and 
the region of attraction of the stationary solution. A different set of algorithms are 
better suited to  uncover the stationary solution structure without regard to the 
above factors. We here employ the Newton method, which has become a standard 
tool for solving nonlinear boundary value problems. Hence, only a brief outline is 
given here, followed by an outline of the discretization scheme. Whenever we refer 
to (7)-( 10) in this section, we mean the stationary form of (7)-( 10). Together with the 
boundary conditions (11) they can be written symbolically as a single equation, 

f k p )  = 0, (26) 

where u : = (w(z, y), 8 ( x ,  y), sZ(z, y), $(z, y)) and p = {A,Pr, y ,  q5} is the parameter 
set. The Newton method amounts to finding the successive corrections U, = 
(W,, T,, On, P,) at each step of the iteration from the linearized form of (26) which 
is f,(u,,p) Un = rn. Dropping the subscript n, the explicit form of the linearized 
equation is 

(27) A ,  W+ l /y  ([$> wl+ [P, wl) = r1, 

A ,  0 + l /y (w,  01 + [ P ,  a]) - A( l /y  T, cos q5 - Tu sin 9) = r3,  (29 1 
A,P+O = r4,  (30) 

(31) 

and the boundary conditions are 

W = T = P = W / a n  = 0 ,  

r1 , r2 , r3 , r4  being the residuals. To start the calculation on any solution branch, a 
converged solution a t  one set of parameter values is needed. This is most easily 
generated for A = 0 as the nonlinear terms in (7)-(10) drop out and the Newton 
scheme converges in one iteration to machine precision. Euler-Newton continuation 
is then used to obtain solutions a t  other values of the parameters. The parameter can 
be any one from the setp,  although we have primarily used continuation with respect 
to A. This entails computing the tangent vector to  the solution path at  the current 
value of A ,  u = &/ah. This is obtained from f ,(u,p) u = -fn which requires only one 
additional solution of (27)-(31) with r, replaced by fA = ( O , O ,  (( l ly) 8, cos 4- 
8, sin $), 0). Similar derivatives with respect to other parameters can be obtained 
from (7)-(10). When such a continuation fails a t  some value of A ,  it usually indicates 
the presence of singular point in the vicinity of A. At this stage the problem is 
reparametrized in terms of a pseudoarclength parameter, s, as proposed by Keller 
(1977). The parameter A is treated as an element of the unknown vector (w(s),  8(s), 
Q(S), $(s), A ( s ) )  which provides a degree of freedom to extend the basic equations 
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(7)-( 10) by an equation defining the arclength and thus making the extended system 
regular. We take this constraint to be 

~ , ~ ~ i ~ ~ ~ ( s ) - - 7 4 ( ( ~ o ) ) + ~ ( ~ ( ~ ) - ~ ( S o ) ) + ~ ~ ~ ( ~ ) - - L a ( ~ o ~ )  

+~(-‘(S)--(So))}dxd~Wz~(h(s)-h(so))  = (s-so), (32) 

with positive weights wi, i = 1,2. The resulting extended system of equations (7)-( 10) 
and (32) is also solved by the Newton method for a specified s and this procedure has 
no difficulty in turning around limit points. A simple step-length adjustment 
procedure, which adjusts As such that the Newton iteration converges to specified 
tolerance within three iterations, was found to be adequate to  turn around even 
sharp corners. 

Simple quadratic limit points on a solution path u = u(A) are determined from the 
following extended system of equations proposed by Moore & Spence (1980) and 
Spence & Werner (1982) : 

f (u ,A)  = 0, f , (u,A)u = 0, m(u) = 1.  (33) 

In  (33) u is the right null vector, and the constraint m(u) = 1 enforces the null 
vector to be non-trivial. This system is known to be regular and can be solved by the 
Newton scheme for the unknowns x :  = (u, u, A ) .  Note that if we let u = (G,s, 0,  $), 
then the additional set of equations for u, symbolically represented in (33) as f,(u, A )  
u = 0, are precisely (27)-(31) with the operand U replaced by u and the right-hand 
side replaced by 0. These are of course nonlinear in the variable set x. Writing (33) 
as a formal operator equation @(x,p)  = 0, the Newton equations are obtained by 
taking the Frkchkt derivative of @(x,p)  with respect to x.  The discretized version of 
(33) has a block structure with the operator f ,  appearing twice and hence the 
resulting equations can be most efficiently solved using the triple bordered scheme, 
the details of which can be found in Weinitschke (1985). While the initial guess for 
u is available from continuation on the solution path, that  for v is estimated by a 
limit-point monitoring scheme devised by Weinitschke ( 1985). 

The symmetry S defined by (12) may be written symbolically as f (Su,p)  = 
Sf(u,p), with f defined in (26). Symmetry-breaking bifurcation points, which lie on 
the path of symmetric solutions and spawn asymmetric solution branches, 
are determined by a method proposed by Werner & Spence (1984) which uses the 
same extended system of equations (33), with the restriction U E X , ,  U E X ,  where X, = 
{u I Su = u} and X ,  = {u 1 Su = -u}  are the symmetric and antisymmetric 
subspaces, respectively. 

The above algorithms are useful in determining the solution structure as A is 
varied, keeping other parameters fixed. In  order to determine how this structure 
unfolds as another parameter (say the aspect ratio, y )  is varied, we need to determine 
the locus of singular points (u(y),  A(y ) )  over a range of y. Such a locus is often called 
a fold curve. It requires the solution of the extended system (33) for a sequence of y 
values, which is best obtained by the Euler-Newton continuation in y. At some 
critical point y = y* the extended system (33) or the system (33) with U E X , ,  V E X ,  
may itself become singular indicating the presence of higher-order singularities. In  
such instances the system (33) can be doubly extended (Yang & Keller 19863) or an 
arclength continuation can be used in y. I n  the present work we have just used the 
simple continuation with resect to $ and y. Since the higher-order singularities are 
few in number, they were simply bracketed by interval halving. 
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In bifurcation theory, the various types of singular points are characterized 
analytically by certain scalar quantities (e.g. see Jepson & Spence 1985). These ‘test 
quantities’ may be evaluated numerically to provide an additional check on the type 
of singularity computed by the methods described above, that is, they may serve as 
monitors to discover singular points on a regular solution branch or on a fold curve. 
For example, let z be the left null vector corresponding to w in (33), then at a limit 
point (z,fA) =k 0 while at a bifurcation point (z,fA) = 0 (in a Hilbert space setting ( * , * ) 
refers to an inner product). Defining af = (z,fuu nu), then af = 0 signifies a pitchfork, 
while af =+ 0 signifies a transcritical bifurcation point. Additional conditions must be 
satisfied for a complete characterization of these (simple) singular points. In  the 
present problem, it is quite simple to compute af .  

4.2. Discretization 
The governing equations (7)-( 10) are discretized in the interior of R or R+ by central 
difference approximation over a uniform grid. The grid points are numbered as {(xi, 
yj) I i = O . . .  N +  1 , j  = 0 ... M +  1). The boundary conditions w = 0 (no-slip), $ = 0 
(impenetrability) and 8 = 0 on the wall are of the Dirichlet type. Axial vorticity, Q, 
is however not known on the solid boundaries. One approach to  overcome this 
difficulty has been to combine (9) and (10) and eliminate Q. This introduces a 
biharmonic operator for + in the combined equation and the normal derivative, 
$,, = 0 (no-slip) provides the additional condition for $. Such derivative boundary 
conditions are also discretized by second-order-accurate difference approximations. 
The discretized form of the biharmonic operator couples 13 unknown nodal values 
requiring special attention near the boundaries. Also the condition number of the 
resultant matrix is very large (Allen, Herrera & Pinder 1988). Hence, we follow the 
alternative approach in which (7)-(10) are retained in their original form and a 
second-order-accurate vorticity boundary condition is derived through a Taylor 
series expansion. Such an approach has been used widely (Roache 1972). As an 
example, the vorticity boundary condition on the left wall x = - 1.0 is given by 

Q O J  = (8+1,~-~2,j)/[2(Ax)21, j = 1 ...M 9 

where (j = 1 ... M )  are the nodal points on the wall. The corresponding Newton 
equations for the corrections, Oo,, are 

Oo,j = (8P,,j-P2,j)/[2(A~)2], j = 1 ... M .  

Similar conditions apply on the other walls. While seeking symmetric solutions, 
the discretized five-point formulae used in the interior are also used on the boundary 
((0, yj) lj = 0 . .  .M+ l}. This introduces a set of points outside the domain of interest 
which are eliminated by imposing the symmetry conditions, 

W-1.j = WI,j, T-1.j = q , j  P-l,j =-P 1 . 3 ’  , 0- 1-3 .=-0 1 , 3  ., (34) 

Since the structure of the discretized, linearized equations is sparse, the sparse 
matrix solver, SPARSPAK (Chu et al. 1984) was used to solve equations (27)-(31) and 
the corresponding linearized form of the extended systems. 

5. Results and discussion 
The physical mechanisms responsible for the existence of multiple solutions in the 

Taylor and Rayleigh-BBnard problems are well understood. Both are closed systems 
with no net flow through the observational domain. In  the former case a centrifugally 
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unstable flow field exists when the inner cylinder rotates faster than the outer one. 
In  the latter case an unstably stratified density field in a gravitational environment 
exists when the bottom wall is heated. In  both cases viscosity acts as a damping 
mechanism and the primary flow at very low values of the dynamical parameter 
(viscous dominated) is both unique and stable. As the external forcing is increased, 
additional solutions bifurcate from the primary solution a t  certain critical values of 
the dynamical parameter. 

The Dean problem is a variant of the Taylor problem. In an identical sense, the 
Morton problem can be considered a variant of the Rayleigh-Be'nard problem. Both 
the Dean and Morton problems are open systems since the flow is driven by an 
imposed pressure gradient through the observational domain. In the Dean problem 
with zero velocity condition around a duct wall, a centrifugally unstable flow regime 
exists only near the outer region of the curved duct where the streamwise velocity 
component decreases with increasing radius. Similarly, in the Morton problem with 
uniform temperature around the periphery, an unstably stratified density field exists 
only near the bottom wall when the fluid is heated uniformly. Once again viscosity 
acts as a damping mechanism and a t  low values of Dn or Gr, the primary flow is 
unique and stable. However, it consists of a primary flow driven by the applied 
pressure gradient and a secondary flow with two counter-rotating vortices driven 
respectively by the centrifugal and buoyancy forces. When the strength of the 
centrifugal or buoyancy force is increased relative to that of the viscous force, 
additional solutions bifurcate a t  certain critical points. Thus the physical 
mechanisms responsible for the primary solution becoming unstable and additional 
solutions bifurcating from them are well understood for these classes of problems. 

The questions concerning the solution structures, flow structures and their 
experimental realizability have been resolved to a far greater extent on the Dean 
problem than in the Morton problem. Appropriate comparisons are made between 
the mixed-convection problem and the Dean problem throughout this section. By 
solution structure we mean the number of solution branches and their connectivity 
through different types of singular points. By flow structure we mean the secondary 
flow patterns a t  any given set of parameter values. Recognizing that a t  a point in the 
parameter space, several different solutions with quite different flow structure can 
coexist, a uniform grid that is fine enough to resolve all the different flow structures 
is used. The pair of numbers (N x M )  represent the number of grid points used in the 
x- and y-directions, respectively. Some grid sensitivity results are presented in table 
2 for y = 1.0, Pr = 0.73, $ = Oo, using grids of (9 x 19), (14 x 29) and (19 x 39). The 
asymmetric solutions are of course obtained over the full domain. Since they occur 
in pairs, with one being the mirror image of the other, the macroscopic results in table 
2 are presented for only one of the pair. I n  the forced-convection limit of h = 0 the 
literature (Shah & London 1978) values of fRe and Nu are reproduced to within 1 Yo. 
At h = 3 x lo6 there are five different solutions, three of which are symmetric. The 
various solutions for this case are identified using the labels introduced in figure 2 (d) .  
The macroscopic results on a grid (14 x 29) are found to  be in agreement with the 
results on the finer grid (19 x 39) to within 1 %. There is also no qualitative change 
in the solution structure as the grid is refined from (9 x 19) to (19 x 39) over the range 
of h which is of interest. The detailed parametric study of the solution structure has 
been carried out using a grid of (14 x 29). 

An additional check on the accuracy of our solutions was performed by solving the 
basic equations (1)-(5) in terms of the primitive variables (u, w, w,p, 5"). We used a 
general PDE-program (written by Dobrowolski) based on a finite-element multigrid 
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(a )  
Solution 9 x 1 9  14x29  19x39  

Forced conv. f Re 14.2584 14.2410 14.2349 
h = O  Nu 3.5994 3.6042 3.6058 
unique 2-cell f Re 19.6916 19.6134 19.5931 
h = 25 Nu 5.9127 5.9203 5.9261 
1 on IS1 f Re 26.1558 25.8017 25.7173 
h = 3 x 1 0 6  NU 8.6015 8.5550 8.5586 
2 on IS1 f Re 27.1097 26.7127 26.6082 
h = 3 x 1 0 6  NU 8.7507 8.6924 8.6907 
3 on P M  f R e  28.2905 27.8406 27.7118 
h = 3 x 1 0 6  NU 9.4243 9.3324 9.3171 
4 o n  AS2 f R e  26.2448 25.8124 25.7112 
h = 3 x 1 0 6  Nu 8.5595 8.5032 8.5047 

( b )  
Singular point 9 x  19 14 x 29 19 x 39 

L1 A 517384 516737 516828 
Gr 139225.64 13981 1.46 140011.21 
f R e  21.7023 2 1.5844 21.5574 
Nu 6.6532 6.6547 6.6622 

Gr 202837.78 216570.95 221805.98 
f R e  22.1475 22.1593 22.1834 
N u  6.9339 7.0026 7.0367 

Gr 195 887.96 2 10 866.02 2 16 482.98 

Nu 

L2 h 769 238 821 757 842 538 

SB 1 h 740 543 798048 820 348 

22.0778 22.1022 22.1303 
6.8922 6.9691 7.0057 

f R e  

24 x 49 

516882 
140082 

21.5487 
6.6673 

852 366 
224232 96 

22.4233 
7.0546 

830 850 
219079.85 

22.1479 
7.0247 

TABLE 2. Grid sensitivity tests: (a) fRe  and Nu at regular points; (b) singular points, A ,  
Gr ( y  = 1.0, Pr = 0.73, @ = 0') 

method. To demonstrate how accurately our finite-difference solutions are repro- 
duced by this method, we first checked the case A = 0 and obtained the following 
data for various values of the maximal step size H :  for H = &, fRe  = 14.4092 and 
Nu = 3.6529, for H = & these two values are 14.2755 and 3.6174, and for H = & they 
are 14.2349 and 3.6125, respectively. These values almost coincide with those of table 
2(a) for h = 0. Similarly, the accuracy of our results for h 8 0 has been verified by 
the finite-element-method multigrid program a t  selected points on the primary 
branch. 

Table 2 ( b )  shows data on numerical convergence a t  singular points. Note that the 
limit point L1 is isolated, but the limit point L2 (almost) coincides with the 
symmetry-breaking bifurcation point SB1. The values of A and Gr as well as the fRe  
and Nu values are shown for each of the three singular points for various grid sizes. 
It is seen that the convergence for the limit point L1 with increased grid refinement 
is a t  least as good as for the regular points (table 2a),  while for the close pair of 
singular points L2/SB 1 convergence is significantly slower than at  regular points. 
The limit point L2 was bracketed in (I) to lie around Gr = 225000. The most accurate 
estimate of L2 obtained in the present work using a (24 x 49) grid is Gr = 224233. We 
did not find spurious singular points on very coarse grids which disappear on grid 
refinement, as was observed by Winters (1987). 

The solution structure and flow structure are well resolved on all the three grids 
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used here over the range of h of interest. These ranges are for Pr = 0.73, 0 < h < 
7 x lo6 and for Pr = 5.0,O < A < lo5. After a suitable scaling of variables (e = 1000, 

= Q/100, h = h/104) the continuation method had no difficulty in taking large 
steps (of the order of h - 10) except near turning points, and in converging in three 
Newton iterations for h values much larger than the limits used here. Several 
additional limit points were also found a t  higher values of A. These, however, have 
not been studied in greater detail for the following reasons. Even at h - 3 x lo6 and 
Pr = 0.73 all the known two-dimensional solutions develop some form of unstable 
modes. Hence from the point of experimental realizability such solutions at  higher 
h values are of less importance. Also, the development of sharp boundary layers on 
the sidewalls at higher h values necessitate the use of finer and/or non-uniform grids. 
Questions such as whether there are infinitely many solutions with increasing 
number of vortices as A+co (as conjectured for example by Yang & Keller 1986a on 
the Dean problem) and whether these solutions are connected to the experimentally 
realizable solutions at lower values of h and higher aspect ratios are clearly of 
interest. But they have not been addressed in the present work. 

5.1. Solution structure for a square duct 
The solution structure for y = 1, 4 = O", Pr = 0.73 is illustrated in figure 2(a-d) .  In 
these, four different projections of the solution paths are shown. Since these are only 
one-dimensional projections of the solution paths, some paths may appear to 
intersect in certain projections and other branches that are distinct may appear to 
be coincident. To be a true bifurcation point, however, they must intersect at the 
same value of Gr in every possible projection - i.e. the entire solution vector of the 
discretized problem should be the same a t  such critical points. Figures 2 (a) and 2 (b)  
show respectively, the Nusselt number and fRe variation with Gr. Since these are 
integrated quantities, the differences in their values corresponding to different 
solution branches at the same Gr are not always significant enough to be seen 
graphically. Also, the two parts of the asymmetric branches are overlaid. The stars 
in figure 2 ( a )  show recent results of Van Dyke (1990) obtained for a circular cross- 
section. It appears that the & power law suggested in his work for the Nu us. Gr 
relationship corresponds to the asymptotic behaviour of our two-cell branch. 

Two other quantities, viz. the stream function and axial velocity at the location 
(z,y) = (0.133, 0.133) are used as the state functions in figure 2(c,  d ) .  This spatial 
location is chosen since the flow profile changes most significantly in this region and 
both branches of any asymmetric solution are made visible. True singular points are 
marked in these figures. Simple limit points and the symmetry-breaking bifurcation 
points are labelled in ascending numerical order as Ln and SBn, respectively, for 
y = 1, Pr = 0.73. The critical values of both A and Gr and the branches on which they 
lie are shown in table 3. Branches of fold curves originating from this reference point 
(y  = 1,  Pr = 0.73) are referred to by the same labels even though the relative 
magnitudes of the singular points can change as y and Pr are varied. 

Various parts of the solution branches were constructed using the following general 
approach. Starting from h = 0 and using arclength continuation, the entire branch 
PM was generated easily by solving over R+. The lower and upper parts of the branch 
PM in figure 2 (a,  b)  correspond, respectively, to the two- and four-cell flow structures 
computed in (I). Considering that the limit points in (I) were only bracketed 
approximately, the agreement is quite good. Based on experience with similar 
problems (Weinitschke, Nandakumar & Ravi Sankar 1990) we expect to find a 
symmetry-breaking point very close to L2 and an asymmetric branch to originate 
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from there. A regular solution on the asymmetric branch was readily generated by 
starting with a solution just below L2, tilting the duct by lo, increasing A past L2 and 
finally bringing the tilt back to 0'. The branch AS1 is then completed by using the 
arclength scheme, applied over the full domain. The branch turns around and forms 
a closed loop. The presence of additional singular points was checked in the region 
of the turning point at  the far end of the asymmetric branch AS1. In  this way, the 
almost coinciding singular points L4 and SB2 were found. This suggests that an 
isolated symmetric branch separated from PM must exist. A regular solution on this 
branch, IS1, was easily generated by starting with a solution just below SB2 as an 
initial guess and solving over R+ at a h value just above SB2. Then continuing 
with the arclength scheme on either direction, the entire branch IS1 that lies within 
h < 7 x 10' was computed. During the course of this computation the arclength 
continuation scheme turned around three additional limit points, L3, L4 and L5, the 
precise locations of which were computed using the extended system. 

Note that each pair of singular points (L2,SBl) and (L4,SB2) are close. Whether 
each pair represents just a single point of higher nullity in the continuous problem 
and whether their slight separation is an artifact of the numerical discretization 
cannot be ascertained at present. The reflective symmetry that is present at zero 
degrees is, however, destroyed with even a slight degree of tilt. The solution branches 
near symmetry-breaking points unfold into smooth process with such a perturbation. 
To accommodate this possibility, we expected to find another SB point near L5 and 
an asymmetric branch to originate from there. Using the steps outlined earlier the 
singular point SB3 and the branch AS2 were located. The limit points L1 and L3 are 
the only isolated ones, i.e. without a nearby SB point. The others are found to occur 
very close to SB points which in turn unfold into smooth processes upon tilting the 
channel, as will be described in detail in 55.5. A total of five different solutions were 
found at A = 7 x lo', and the terminal parts of these branches are labelled 1-5 in 
figure 2(c, d ) .  

The flow profiles of the five different solutions a t  h = 3 x loe and Pr = 0.73 are 
shown in figure 3. Figures 3 (a)-3 (c) show, respectively, the streamline contours, 
axial velocity perspective plots and the isotherms of a four-cell flow pattern on the 
branch PM. This corresponds to the four-cell flow already computed in (I) .  Figure 
3(d-f) show similar profiles on the branch IS1 originating at  point 2. This is a new 
four-cell pattern. It is conjectured that upon increasing the aspect ratio to a suitably 
large value, the first four-cell flow structure (figure 3a-c) will become a genuine 
primary flow with four cells spanning the entire channel height while the second four- 
cell structure (figure 3d-f) might be connected to a six-cell primary flow at a suitably 
large aspect ratio. Such transitions are expected to take place through a series of 
transcritical bifurcations which was proposed as a mechanism for the primary mode 
exchange process in the Taylor problem by Benjamin (1978). Figure 3 ( g i )  shows a 
two-cell flow structure on the branch IS1 originating at point 1. Figure 3 ( j - Z )  shows 
a two-cell asymmetric flow structure on the branch AS2 originating at point 4. Note 
that the streamline contours and the axial velocity profile near the bottom wall 
change quite significantly and hence their choice at  spatial position (0.133,0.133) as 
the state function in figure 2 ( c ,  d )  is seen to be a sensitive indicator of changes in flow 
pattern on various parts of the solution branches. 

All the different flow structures shown above have also been computed for the 
Dean problem (Winters 1987). Since the solution structure is also essentially similar, 
only the differences are discussed here. While in the Dean problem the isolated 
symmetric branch has only one limit point we find three limit points in the present 
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Singular 
points 

L1 
SB1 
L2 
L3 
L4 
SB2 
SB3 
L5 

L1 
SB 1 
L2 
L3 
L4 
SB2 
SB3 
L5 

Branch 

PM 
PM & AS1 
PM 
IS 1 
IS1 
IS1 & AS1 
IS1 & AS2 
IS 1 

PM 
PM & AS1 
PM 
IS 1 
IS 1 
IS1 t AS1 
IS1 & AS2 
IS 1 

A 

Pr = 0.73 

0.51673765 10' 
0.79804825 10' 
0.82175700 10' 
0.200737 13 lo7 
0.241 74261 lo' 
0.241989 46 lo7 
0.242798 13 lo' 
0.24517398 lo7 

Pr = 5.00 

0.12433354 lo5 
0.23748938 lo5 
0.24072729 lo5 
0.39933373 lo5 
0.53264439 lo5 
0.54241702 lo5 
0.534821 52 lo5 
0.54880903 lo5 

Gr 

0.13981146 10' 
0.21086602 10' 
0.21657095 10' 
0.47154621 10' 
0.56249075 10' 
0.562830 17 10' 
0.56456925 10' 
0.569563 76 10' 

0.32788399 lo5 
0.60819487 10' 
0.61586648 lo5 
0.10102388 10' 
0.13163878 10' 
0.13440622 10' 
0.13200779 10' 
0.13576532 10' 

TABLE 3. Singular points a t  y = 1.0, # = 0" (14 x 29H or 29 x 29F). Ln is a limit point on a 
symmetric branch, SBn a symmetry-breaking point 

problem. The asymmetric branch AS1 originates from near L1 in both problems. It 
is, however, connected to IS1 in the present problem while it remains disconnected, 
a t  least within the range of parameter q covered by Winters. Additional limit points 
are found on AS1 in the Dean problem while none is found in the present case. Since 
arclength schemes can jump branches, particularly in a region where several 
branches are present, we have taken extra precautions to resolve the connectives 
between (L4/SB3) and (L5/SB2). Using small arclength steps we do find that the 
branches AS1 and AS2 turn around a t  SB3 and SB2 respectively. The branch 
connecting L4 and L5 is found to be symmetric. The present structure is also 
appealing from the following viewpoint. As will be shown later, the two-cell part of 
the branch IS1 originating a t  point 1 becomes connected to  the two-cell part of the 
primary branch originating at the origin ( A  = 0) upon tilting the duct even slightly. 
Hence it appears that the AS1 branch must link the branches PM and IS1 to provide 
for such an unfolding upon tilt. 

5.2. Stability of solutions 
The solution at h = 0 is both unique and stable. Changes in the linear stability of the 
solution along the branches could be monitored by monitoring the sign changes in the 
determinant of the Jacobian as was done by Winters (1987). An alternative approach 
is to recognize that the complex function /3 = (1 + z ) / ( l  - z )  maps the left half-plane 
onto the interior of the unit circle; hence the eigenvalues of the matrix B = 
- (A - / ) - I (A +/) are all inside the unit circle, if all the eigenvalues, (T( of A have 
negative real parts. Hence computing only the largest eigenvalue of B by the simple 
(and inexpensive) power iteration determines the stability. Certain limitations in 

t We thank Professor Dobrowolski, Institut fur Angewandte Mathematik, Universitat 
Erlangen - Nurnberg, for suggesting this approach. 
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Stream function Axial velocity Isotherms 

I I 

FIGURE 3. Five solutions are present at A = 3 x lo6 and Pr = 0.73, y = 1.0, 4 = 0'. These are 
labelled as points 1-5 in figure 2 (c, d). (a) Streamline contours, (b) axial velocity perspective plots 
and (c) isotherm contours are shown for a four-cell pattern which lies on the branch PM (point 3). 
(d-f)  Similar profiles for another four-cell pattern on the branch IS1 (point 2). (S;) A two-cell 
pattern on the branch IS1 (point 1). ( j - Z )  An asymmetric solution on the branch AS2 (point 4). Note 
that its mirror image (not shown) corresponds to point 5. 
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Branch 

PM 

PM 

PM 

PM 

IS 1 

IS 1 

AS2 

A 

6 x  lo5 

6 x  lo5 

6 x  lo5 

3 x  loe 

3 x  lo6 

3 x loe 

3 x lo6 

Flow 
pattern 

2-cell 

weak 
4-cell 
strong 
4-cell 
4-cell 
(point 3) 
2-cell 
(point 1 )  
4-cell 
(point 2) 

Asymmetric 

R' 
or 
R 

Half 
Full 
Half 
Full 
Half 
Full 
Half 
Full 
Half 
Full 
Half 
Full 
Full 

Eigenvalues of Jacobian A 
with positive real parts 

M =  19 

Stable 
0.0307 f i0.1776 (spurious) 
0.0532 
0.0463 
Stable 
0.0862 
(0.0615 i0.235) 
(0.1746, 0.0337 i0.223) 
0.0316f i0.415 
0.0546 f i0.253 
(0.398, 0.0613fi0.4314) 
(0.249, 0.157, 0.070fi0.262) 
5 complex pairs 

Power 
iteration on B 

M = 3 9  

Stable 
Stable 
Unstable 
Unstable 
Stable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 

TABLE 4. Summary of eigenvalue calculations ( y  = 1.0, # = O", Pr = 0.73) 

this method must be recognized. Any two-dimensional, time-dependent solution 
branch that emerges a t  a Hopf point cannot be detected by monitoring the sign of 
the determinant alone. Although such solutions are physically unrealizable, their 
presence has important consequences for the stability picture. The convergence of 
the power iteration method is often slow, since the mapping brings the eigenvalues 
close to each other. Also, stability of these solutions with respect to three- 
dimensional perturbations cannot be determined within the present formulation. 
Computation of the complete eigenvalue spectrum along the solution branches is a 
computationally very expensive process. Hence we have used a combination of the 
power iteration and eigenvalue spectrum computation a t  selected points on the 
branches to piece together the following stability picture. It is admittedly incomplete, 
as the presence of any bifurcating three-dimensional stationary solutions as well as 
two-dimensional time-dependent solutions have not been taken into account. The 
entire eigenvalue spectrum was computed only on a coarse grid of (19 x 9) over R+ 
and (19 x 19) over R. Power iteration was used on finer grids of up to (39 x 19) over 
R+ to check if the largest eigenvalue of B lies within the unit circle. For Pr = 0.73 a 
single pair of complex eigenvalues appeared at  A = 6.0 x lo5 on the two-cell part of 
the primary branch P M  when a coarse grid was used over full domain. We expect this 
branch to remain stable up to the limit point L2. Hence this pair of complex 
eigenvalues will be spurious; in fact, it disappeared upon grid refinement. The 
computed eigenvalues are summarized in table 4. The results from power iteration 
are indicated either as stable or unstable depending on whether the largest value lies 
within the unit circle or not. For h = 6 x los, the power iteration on the finest grid 
always converged to a complex pair which was detected using the algorithm outlined 
in Holger (1988). 

We shall now examine the stability of the three solutions on the primary branch, 
PM a t  h = 6 x lo5. The two-cell solution remained stable. Passing through the pair 
of points (L2,SBl) to  the middle part of PM, two positive eigenvalues were found, 
one corresponding to symmetric mode (eigenfunction) and the other corresponding 
to the asymmetric one. Turning around L1, the eigenvalue corresponding to the 
symmetric mode becomes negative, leaving one positive eigenvalue corresponding to 
an unstable asymmetric one. This was the only unstable mode found at A = 3 x los 
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also. Thus the symmetric four-cell solutions on the branch P M  are unstable with 
respect to asymmetric perturbations. This implies that any pseudo-transient 
simulation that imposes symmetry boundary conditions would find the four-cell 
solution to be stable. This behaviour is quite analogous to that found in the Dean 
problem (Winters 1987). 

Some comments on the observability of the four-cell flow structure in mixed 
convection experiments are in order. In the Dean problem such flows have been 
observed, contrary to their predicted instability. In three-dimensional simulations of 
Dean flow also we have found the spontaneous development of such four-cell flows 
(Ravi Sankar et al. 1988) from a parabolic inlet profile and their persistence in an 
axially invariant state over significant length of the duct even while solving over the 
full domain. This suggests that the growth rates of these asymmetric, unstable modes 
must be so small that they do not destroy the symmetric, four-cell flows rapidly. 
However, when the flow is perturbed strongly in an asymmetric fashion, the four-cell 
flow was never recovered. Instead streamwise periodic mode was triggered. We have 
carried out similar three-dimensional computations (Ravi Sankar et al. 1991) on the 
mixed-convection problem and have observed similar behaviour. Near the limit 
point L1 on the four-cell part of the branch the positive eigenvalue is 0.0862 while 
the eigenvalue with the largest magnitude is - 10.8. Near singular points, such small 
growth rates are to be expected. Upon increasing the h to 3 x 10' on the same branch 
the magnitude of the positive eigenvalue increased only modestly to 0.1746. Thus the 
linear growth rates of this unstable mode are quite small and hence such flows are 
quite likely to be observed as long as sufficient precautions are taken to ensure a clean 
inlet profile and a perfect duct alignment with respect to the gravitational direction. 

Although a number of experimental works exist on the mixed-convection problem 
(see (I) for the references) most of them are confined to measuring macroscopic 
quantities like the heat transfer coefficients in circular ducts. Only recently, Cheng 
& Yeun (1987) have examined the flow structure of secondary flows in isothermally 
heated horizontal ducts through visualization techniques. Unlike in the uniform flux 
case, the strength of the secondary flow decreases in an axially isothermal case as the 
fluid warms up to the wall temperature. Clearly more experimental effort is needed 
on identifying the flow structure in the mixed-convection problem. 

Returning to other solution branches, a t  h = 3 x 10' a full eigenvalue computation 
on the coarse grid revealed the presence of at least one complex pair on every branch 
even over R+. The magnitude of the real parts is small as seen in table 4. Since grid 
refinement could be done only with the power iteration computation, that provided 
only the eigenvalue largest in magnitude. Even this computation on the finest' grid 
used in the study revealed the largest eigenvalue on every branch to lie outside the 
unit circle. Hence we expect all solutions at h = 3 x 10' to be unstable. This is also 
consistent with our three-dimensional study (Ravi Sankar et al. 1991) where we have 
observed the development of a new form of streamwise periodic, three-dimensional 
flows a t  such high values of Gr. 

5.3.  Effect of aspect ratio 
Since the aspect ratio is defined as y = b/a ,  a value larger than unity implies that the 
shorter side of the duct is aligned parallel to the gravity vector (see figure 1) .  Thus 
for smaller-aspect-ratio ducts the two-cell flow structure remains the preferred one 
over a large range of h while in larger-aspect-ratio ducts multicellular flows with the 
cells spanning the entire channel height such as those computed in Fung et al. (1987) 
are readily formed beyond a threshold value of A. In  the present study we restrict y 
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FIGURE 4. This figure shows how the various singular points found at y = 1.0 and Pr = 0.73 are 
unfolded aa the aapect ratio is changed. Limit points L2 and L4 come together at  a transcritical 
point TC at y = 1.408. With decreasing aspect ratio, L4 and L5 come together and disappear 
through a hysteresis point H at y = 0.791. L2, L4 and L5 taken together can be seen to form a tilted 
cusp around H. 
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FIGURE 5(a,b) .  For caption see facing page. 
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FIGURE 5. State diagrams show the solution structure for Pr = 0.73, 4 = 0" just before (y = 1.405) 
and after (y = 1.410) the transcritical point. (a)  Nu vs. Gr and ( b )  f Re vs. Gr at y = 1.405. (c) Nu 
us. Gr and ( d )  f Re us. Gr at y = 1.410. ( e )  Axial velocity at node (2,2) vs. Gr at y = 1.405. (f) Axial 
velocity at node (2,2)  vs. Gr at y = 1.410. The changes in connectivity of the solution branches past 
the transcritical points are seen best in ( e )  and (f). 
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FIQURE 6. This figure shows how the various singular points found at y = 1.0, q5 = 
are unfolded as the Prandtl number is changed. No higher-order singularities are 
fold curves over a Pr range of 0.73 to 5.0. 

0' and Pr = 0.73 
present on these 

to a range of 0.5 to 1.6. Figure 4 shows the unfolding of the singular points computed 
at  y = 1 as the aspect ratio is varied over this range at  fixed values of Pr = 0.73 and 
# = 0". The first fold curve corresponding to L1 demarcates the uniqueness region. 
As expected, the uniqueness region, where the two-cell flow prevails, increases with 
decreasing aspect ratio. 

The changing aspect ratio can be regarded as a perturbation on the square 
geometry that preserves the reflective symmetry about the y-axis. Hence the 
symmetry-breaking bifurcation points (indicated by data points) remain robust to 
such perturbations. In particular SB1 and L2 continue t o  remain close to each other 
as y is varied. Similar behaviour has been observed in both the Dean (Winters 1987) 
and Taylor (Cliffe & Mullin 1985) problems. The limit points L2 and L4 approach 
each other as the aspect ratio is increased and join at a turning point at y = 1.408. 
This point, labelled TC in figure 4, can be viewed as either a limit point on the fold 
curve or as a transcritical point with respect to y. Note that the two points L2 and 
L4 are on two different symmetric branches P M  and IS1, respectively. An asymmetric 
branch AS1 connects these two branches as already seen in figure 2 (c, d ) .  Thus the two 
symmetry-breaking points SBI and SB2, that are near L2 and L4 respectively also 
come close to each other as the aspect ratio is decreased and coalesce near y = 1.408. 
The state diagrams just before (y  = 1.405) and after (y  = 1.410) the transcritical 
point are shown in figure 5 (a-f ). The limit points L2 and L4 can be seen to approach 
each other in figure 5 (a,  b ,  e )  and the asymmetric branch AS1 remains a closed loop, 
but shrinks in size. The change in connectivity between the branches P M  and IS1 is 
quite evident in figure 5 ( c ,  d ,  f ) .  As in the Dean problem, the part of the branch IS1 
that has a two-cell flow structure at  y = 1.405 becomes connected to the part of the 
branch PM originating at  h = 0. The two types of four-cell flows that are found on 
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FIGURE 7. State diagram shows the solution structure for y = 1.0, 4 = O", Pr = 5.0. (a )  Nusselt 
number vs. Gr, ( b )  f R e  vs. Gr, (c) stream function at node (2,2) vs. Gr and ( d )  axial velocity at node 
(2,2) us. Gr. The solution structure remains essentially the same as found for Pr = 0.73. 
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FIQURE 8. This figure shows how the various singular points found a t  y = 1.0, q5 = Oo, and Pr = 
5.0 are unfolded as the aspect ratio is changed. As for Pr = 0.73 limit points L2 and L4 come 
together at a transcritical point at y = 1.456. With decreasing aspect ratio, L4 and L5 come 
together and disappear through a hysteresis point a t  y = 0.719. 

different branches (point 3 on PM and point 2 on IS1) before the transcritical point 
are to be found on the same branch after the transcritical point. This branch is now 
isolated from the origin and disconnected. 

Since the uniqueness region becomes enlarged with decreasing aspect ratio, the 
multiplicity features are found to occur at higher A. All the singular points found at 
y = 1 continue to be present up to y = 0.5 with the exception of L4 and L5 and the 
symmetry-breaking points associated with them. These two limit points, which are 
on the isolated branch IS1, disappear through a hysteresis point at y = 0.791. 
Viewing this point as the organizing centre, the fold curves L5, L4 and L2 can be 
interpreted as forming a tilted cusp with a transcritical point appearing on the fold 
curves L2, L4. The primary mode exchange process that takes place here is between 
two-cell flows lying on two different branches PM, IS1. By analogy with Taylor flows 
one would expect L5 to  lead to  another tilted cusp pointed in the opposite direction 
a t  higher aspect ratios that would form the basis of another primary mode exchange 
process between a two- and a four-cell flow. 

5.4. Effect of Prandtl number 

The effect of Pr on the solution structure is examined in figures 6-8. The singular 
points found a t  y = 1.0, Pr = 0.73, # = 0' are tracked as the Pr is changed from 0.73 
to 5.0. Such fold curves are shown in figure 6. No higher-order singularities are found 
on these fold curves, indicating that the solutions structure remains the same for all 
Pr in this range. But the flow transitions take place a t  a much earlier Gr as Pr is 
increased. This observation is similar to the one made in (I) for flow through circular 
ducts. A larger value of Pr implies a smaller value of thermal diffusivity in 
comparison to  the momentum diffusivity. Hence the thermal boundary layers are 
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FIGURE 9. State diagram shows how the solution structure unfolds when the channel cross-section 
is tilted slightly by 4 = 1" for Pr = 0.73, y = 1.0. (a) Nu us. Grand (b) f R e  us. Gr. (c, d )  Axial velocity 
a t  node (2, 2) vs. Gr for q5 = + 1" and q5 = - 1" respectively. Note, that the SB points and the 
neighbouring limit points L2, L4 and L5 that were present in figure 2 have disappeared. In (c, d )  
the change in connectivity between the various branches for positive and negative tilts is shown. 
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thinner and the temperature in the interior becomes more uniform with increasing 
Pr. Hence the secondary flow which is driven by the horizontal temperature gradient 
is also weakened in the interior with increasing Pr. 

The state diagrams for y = 1.0, Pr = 5.0 are shown in figure 7 ( a - d ) .  Note that in 
figure 7 ( b ) ,  the primary branch of f R e  vs. Gr appears to intersect between limit points 
L1 and L2. But this is not a bifurcation point. The solution structure is once again 
best illustrated with the stream function and axial velocity at (0 .133,0.133)  as state 
functions as shown in figure 7 ( c ,  d) .  The true singular points are indicated in these 
figures. The stability picture remains essentially the same as for Pr = 0.73 with the 
following exception. On the two-cell part of the branch IS1, the complex pairs with 
positive real parts appeared and disappeared sporadically as h was varied 
continuously. This was monitored with the power iteration on the 29 x 14 grid. It is 
interesting that in the Dean problem Winters (1987) finds this part of the branch to 
be stable. In the case of Pr = 0.73 a complex pair appeared very near L4 and 
persisted on the entire branch, leading us to conclude that branch to be unstable for 
Pr = 0.73 in an oscillatory fashion. The situation is not so clear for Pr = 5.0. 

Figure 8 shows the variation of the singular points with aspect ratio for Pr = 5.0. 
This structure also remains the same as for Pr = 0.73 with a transcritical point TC 
at  y = 1.457 and a hysteresis point H at  y = 0.88. The tilted cusp structure formed 
by L2, L4 and L5 is much more clearly visible in this figure. The symmetry-breaking 
bifurcation points are also robust with respect to  changes in the Prandtl number as 
one would expect. They also remain close to the limit points. The only exception is 
their presence beyond the hysteresis point at which L4 and L5 disappear. 
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5.5. Effect of tilt 
Stretching a square duct into a rectangle preserves the reflective symmetry in the 
problem. Hence the symmetry-breaking points found earlier remain structurally 
stable to such geometrical perturbations. In  contrast tilting the duct, even slightly, 
destroys this symmetry. The symmetry- breaking points found in the earlier sections 
are structurally unstable to such geometrical perturbations and result in the smooth 
unfolding of the solution branches. In  this section, the unfolding process a t  SB1, 
which takes place in the range of 0 < $ < 0.15' is examined and the complete 
solution structure emerging for an imperfection of q5 = 1' tilt is calculated for h up 
to 7 x lo6 (Pr = 0 .73) .  Figure 9 shows the state diagram for this case a t  y = 1.0, 
Pr = 0.73. Note that solutions for negative tilt can be constructed from those of 
positive tilt using (14). The macroscopic quantities such as Nu, fRe do not change 
for the same degree of positive or negative tilt. They are shown in figure 9 ( a ,  b ) .  
The variation of the axial velocity at the point (0.133, 0.133) with Gr is shown in 
figures 9 ( c )  and 9 ( d )  for positive and negative tilts, respectively. There are only 
three branches and the primary branch PM, which originates a t  Gr = 0,  continues 
smoothly. The other two branches are disconnected and each has a simple limit 
point. These limit points correspond to L1 and L3 in the untilted case and they do 
remain even under a large degree of tilt. 

Next we describe the unfolding process a t  SB1 for non-zero positive tilt. The 
behaviour is quite similar a t  other SB points. As $ increases from zero, the unfolding 
of SB1 changes the bifurcation diagram of figure 2 ( d )  into what is sketched in figure 
lO(a). SB1 has unfolded into a limit point L2' close to L2. With increasing $, these 
two limit points coalesce into a hysteresis point (double limit point) at a critical angle 
$* ; therefore they have disappeared for $ > $*. We have calculated L2 and L2' as 
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FIGURE 10. Unfolding of SB1 for y = 1, Pr = 0.73. (a) Sketch of the state diagram near L2 for small 
tilt angles. The dashed curve corresponds to AS1 branch in figure 2 ( d ) .  ( b )  Computed fold curve 
showing the variation of L2 and L2’ as a function of q5. 

functions of q5, the result is shown in figure 10(b).  Clearly, near q5 = 0.12, L2 and L2’ 
merge into a hysteresis point near h = 84.479. 

There may be further singular points on the folds shown in figure 10(b) .  When the 
primary branch PM in figure 10(a) passes through L2 and L2’, the number of positive 
eigenvalues changes from 0 to 1 to 2 making the part PM’ unstable. In fact, our 
eigenvalue calculations for tilt q5 = lo show that the branch PM leading to point 4 in 
figure 9 ( c )  becomes unstable past a point where L2 was in the untilted case. But the 
instability is due to a pair of complex eigenvalues with positive real parts. One 
possible explanation of this behaviour is that there is an origin of a Hopf point 
(Takens-Bogdanov singularity) on the L2 fold in figure l O ( b ) ,  from which a branch 
of Hopf points emerges. Hence, more complex interactions are apparently required 
to explain the evolution of the bifurcation diagram of figure 2 with respect to tilt. But 
the study of such effects is beyond the scope of the present paper. 

There are still five different solutions at  Gr = lo6 and the terminal points in figure 
9 ( c ,  d )  are numbered 1-5. The flow profiles corresponding to these points are labelled 
and shown in figure 11 (a-o). Figure 11 (a+) shows the flow profiles for positive tilt 
corresponding to  point 4 in figure 9 (c ) .  The primary branch evolves continuously 
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FIGURE 12. Variation of limit points L1 and L3 with tilt angle for y = 1.0, Pr = 0.73. 

from the origin A = 0 to point 4. For a positive tilt, even in the uniqueness region 
corresponding to small values of A ,  the separating streamline moves towards the left. 
Viewing the tilt to be around the lower left corner, this is to be expected as increasing 
the tilt to 45' should cause the separating line to reach the lower left corner, thus 
once again establishing a symmetry about the vertical line. Hence movement of the 
separating streamline towards the left corner a t  the bottom wall is regarded as the 
natural flow for positive tilt. Note that near the SB point corresponding to  zero tilt, 
the primary branch unfolds, selecting that part of the asymmetric branch which 
corresponds to the natural flow. Thus if the tilt is negative, the primary branch will 
select the alternative path as seen in figure 9 ( d ) .  At the same A, however, another 
two-cell flow exists with the separating streamline shifted to the right as in figure 
il(gi). This is an anomalous flow and lies on the disconnected branch IS2 
corresponding to  point 5. As expected the primary branch would evolve towards this 
point for negative tilt (figure 9 d ) .  The four-cell flows found at zero tilt are also 
present for small non-zero tilt, but they are situated on the isolated branches as 
secondary modes. These are shown in figure 11 (d-f)  for point 2 and in figure 11 ( j - Z )  
for point 3. 

The fold curve tracing the variation of these limit points with tilt angle is shown 
in figure 12.. Note that these limit points move to larger values of Grashof numbers 
with increasing tilts. Thus with increasing tilt, the two-cell flow remains the only 
solution over a larger range of Gr. 

6. Conclusions 
The multiplicity features of two-dimensional mixed-convection flows through a 

rectangular duct are studied. The bifurcation structure is determined for a square 
duct for Pr = 0.73 and 5.0. Up to five different solutions are found within a Gr range 
of O-106. Three of the branches located in this range of Gr are new. Determination 
of the linear stability of these solutions indicates that all of them develop one or other 
mode of instability. In particular the four-cell flow is found to be unstable to 
asymmetric perturbations. While time-periodic branches may emerge through Hopf 
bifurcation, they are believed to be physically unrealizable. The most likely 
possibility is the development of streamwise periodic, three-dimensional flows which 
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break the translational symmetry that has been assumed in the present work. A 
study of such three-dimensional flows will be reported in follow-up work. 

For Pr = 0.73 five limit points and three symmetry-breaking points have been 
computed over a Grashof number range of 0 to  los for a square duct. Additional limit 
points appear a t  higher Gr. Since all the known two-dimensional solutions become 
unstable even a t  Gr = lo6, the solution structure a t  higher Gr has not been 
determined. The variation of these singular points with the aspect ratio has been 
determined using the fold-following algorithm. A transcritical point is found a t  y = 
1.408 and a hysteresis point is found at y = 0.791. Upon tilting the duct even slightly 
(lo), the symmetry-breaking points unfold to  yield smooth solution branches. The 
solution structure remains unchanged as Pr is increased. The singular points, 
however, occur a t  lower values of Gr as Pr is increased. 
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